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Introduction


With the continual aging of the population in the United States, bone fractures and diseases such as osteoporosis, 
osteomalacia and osteitis deformans (Paget's disease of bone) present a need for the development and perfection of bone 
regeneration methods [1].  While numerous bone fractures can be treated by bone grafting, success rates vary, and the 
treatment is limited in several ways.  Biodegradable bone tissue scaffolds may provide solutions that strike a balance between 
function and mechanical properties. Our interest in biodegradable polymers for bone tissue scaffolds includes controlling the 
polymer architecture through chemical modifications and preparing polymeric nanofiber scaffolds via electrospinning for tissue 
engineering. 





The underlying principle of tissue engineering involves regenerating living tissue using cell-scaffold-based approaches [2 - 5]. 
Tissues can be potentially engineered by utilizing a combination of the patient’s own cells combined with polymer scaffolds. 
One of the challenges in tissue engineering is the design of an ideal scaffold that can mimic the structure and biological 
functions of the natural extracellular matrix (ECM). Cells can attach and organize well around fibers with diameters smaller than 
those of the cell. Nanoscale fiber scaffolds provide an optimal template for cells to seed, migrate and grow. Polymeric nanofiber 
matrix is the most promising scaffolding materials for native ECM analogs [6, 7]. Electrospinning can produce polymeric fibers 
of nano-diameters to mimic the nanoscale features of native ECM. While a significant number of studies have investigated 
biodegradable polymers for bone tissue scaffolds, one problem which has not been solved is the mismatch between the 
mechanical properties of the bone and the scaffold materials.  Thus, our objective is to develop biodegradable tissue scaffolds 
for bone that mimics the size scale and chemistry of the ECM with nanometer dimensions, an interconnected pore structure, 
and enhanced mechanical properties. We will investigate interesting combinations of constituent materials and modifications of 
the electrospinning process to develop polymeric scaffolds with varying degrees of hierarchical complexity and functionality, and 
evaluate their propensity for cell growth. 





In this study, scaffolds using PLGA/HA and PCL/HA nanofibers with different wt % compositions were fabricated via 
electrostatic co-spinning technology and characterized for bone tissue engineering applications. The inherent nonwoven nature 
of the electrospun nanofibers result in interconnected pores sufficient for cell attachment [8, 9]. The process of electrospinning 
involves an applied electric field to form fibers from a polymer solution. The size, properties, and quality of the fibers will differ 
depending on the concentration of the solution and process parameters of electrospinning (applied voltage, needle size, volume 
feed rate, distance of the collector plate from the needle tip, as well as the solution characteristics i.e., viscosity, conductivity).  
The formation of nanofibers by electrospinning is induced via the uniaxial stretching of a viscoelastic solution.





Polycaprolactone (PCL), biodegradable polyester, has received US FDA approval for several clinical applications for humans 
and is also a commonly used scaffold for tissue engineering due to its high biocompatibility, mechanical properties and 
nontoxicity. However, the drawbacks of PCL, such as its strong hydrophobicity, slow degradation kinetics, and lack of bioactive 
functions, have greatly limited its application as scaffolds in tissue engineering. Therefore, blending the bioactive functions of 
hydroxyapatite with the good mechanical properties of PCL to generate a new biohybrid material should show an improvement 
in biological, mechanical, and degradation properties compared with the individual components.


Hydroxyapatite (HA) is osteoconductive, nontoxic, noninflammatory, and promotes cell proliferation. In addition, it has been 
reported that hydroxyapatite can increase the compressive strength of PCL [10, 11]. Furthermore, as one of the natural 
components in bone, hydroxyapatite imitates the natural bone extracellular matrix, increasing surface area, wettability, and 
roughness, to optimize bone cell-specific protein interaction with cells.





Methods


Materials:


PLGA copolymer with lactide to glycolide ratio of 85/15 and inherent viscocity 0.63 dL/g was obtained from Lactel Absorbable 
Polymers (AL, USA). PCL polymer with an inherent viscosity 1.15 dL/g aws obtained from Durect Corporation, (Cupertino, CA).  
Hydroxyapatite (HA) powder with an average diameter of 100 nm-150 nm particle size and 15 m2/g surface area were 
purchased from Nanocerox Inc. (Ann Arbor, MI). Methanol (CH3OH), Chloroform (CH3Cl), Dichloromethane (DCM) and 
Dimethylformamide (DMF) were obtained from Fisher Scientific (Fair Lawn, NJ). All solvents were used as received without 
further purification.





Solution Preparation:


Different compositions of PLGA/HA 1%, PLGA/HA 5% and neat PLGA were prepared in CH2Cl2. PCL/HA solutions were 
prepared where HA particles (1.0, 5.0 and 10.0 wt %) were mixed with PCL first under mechanical stirring in DMF to ensure a 
good dispersion of HA particles within the resulting. DCM was added and the mixture stirred and sonicated until the PCL 
powder dissolved completely to form a precursor dispersion for electrospinning nanofibers.


The polymers were dissolved using a magnetic stirrer to achieve a ~15.0-wt% solution and electrospun at a high voltage 
(GAMMA High Voltage Research, Ormondo Beach, FL) of 15 kV to create nanofibers. A feeding rate of 1.5 mL/hr (0.025 
mL/min) was set in an F100 Syringe Pump (Chemyx Inc, Houston TX) and a grounded aluminum collector plate was placed 
about 10 cm from the tip of the needle. 


Electrospinning Process:





Electrospinning is a process that is used to produce nanofibers from solution. To generate fibers, a polymer solution is forced 
through a capillary, forming a drop of polymer solution at the tip. Charges (~17 kV) from a high voltage electrical field are 
induced on the liquid droplet held by its surface tension. This is done by connecting one electrode to a syringe containing the 
polymer solution and another to a collector plate. As the intensity of the electric field increases, surpassing a threshold value, 
the droplet elongates, the electrostatic force between the needle and the collector plate overcomes the surface tension, and a 
streaming jet of the solution is ejected from the tip of the needle. The solvent evaporates leaving behind a charged thin polymer 
fiber.  Fibers are deposited in a random orientation when the collector is a flat metal plate. Fibers can be deposited in a rotating 
target when the collector is modified to incorporate a rotating metal plate on which the polymer is wound. The resulting fibers 
can have diameters on the order of tens to hundreds of nanometers. In electrospinning, the key to optimal properties is 
significant elongation of the polymer.  As the electrospinning jet moves away from the nozzle, it is stretched by whipping and 
bending instabilities. This results in an extremely large draw ratio, which serves to elongate and align the polymer chains. 





Characterization


Fourier Transform-Infrared (FT-IR) spectra were recorded in attenuated total reflection (ATR) mode using a Thermo Nicolet 
iS50 FT-IR Spectrophotometer (DOD W911NF-14-1-0075). The spectra were obtained with 32 scans per sample ranging from 
4000 to 400 cm-1. Spectra showed an ester carbonyl stretch from the PLGA and PCL (C=O) at 1747 cm-1 in all the scaffolds 
with no significant shift due to HA interaction. Other major peaks observed were the C-O-C ether group at 1083 cm-1, C-O 
stretch at 1128 cm-1,O-H deformation at 1264 cm-1, methyl group C-H stretching at 1452 cm-1 and other methylene, methyl 
groups at 2800–3300 cm-1. For the nanocomposite scaffolds a PO4 3- stretch (1030 cm-1) and bending (570 cm-1), typical of 
HA were observed with intensities varying proportionally to the HA concentration.





Thermal analyses of the scaffolds were evaluated using a TA Instrument DSC Q2000 differential scanning calorimetry (DOD 
W911NF-06-1-0497). DSC was used to study the thermal behavior of the nanofibers. 5.0-10.0 mg cured samples were heated 
from room temperature to 250°C with a heating rate of 10°C/min.  The sample chamber will be purged with nitrogen gas at a 
flow rate of 50mL/h. 





The morphology of the fibers is currently under evaluation using scanning electron microscopy (SEM). The fiber diameter 
distributions in the scaffolds will be obtained by analyzing the SEM micrographs using image-analysis software. It is expected 
that the diameter distributions of PLGA/HA nanofibers will be well within the range of the natural ECM (50–500 nm) [8, 12-15]. 





Cytotoxic properties of nanofiber scaffolds evaluated in vitro cell culture system. TRAMP C1 cells were treated with different 
percent of PLGA/HA for 24 hours and cell toxicity was analyzed by MTT assay. TRAMP C2 cells were seeded on neat PCL and 
PCL with different percentage of HA for 24 hours at 37 0C with 5% CO2. Cell viability was measured using the methyl 
thiazoletetrazolium (MTT) assay. Figure 4 demonstrates that the viability of TRAMP cells was not compromised even at higher 
percentage of PLGA/HA and PCL/HA. Thus, this data suggests that PLGA/HA and PCL/HA can be used a therapeutic carrier 
without compromising the viability of cells.

Technology Transfer



Abstract 

This research aims to develop polymeric nanofibers that can be used as tissue scaffolds. Nanoscale fiber 

scaffolds provide an optimal template for cells to seed, migrate and grow. The goal is for the cells to 

attach to the scaffolds, then replicate, differentiate and organize into normal healthy tissues as the 

scaffold degrades. In this study, non-woven Poly (e-caprolactone)/Hydroxyapatite (PCL/HA) nanofibers 

and Poly (lactic-co-glycolic acid) (PLGA)/HA nanofibers with different wt % compositions were prepared 

by electrostatic co-spinning technology and characterized for bone tissue engineering applications. It 

was hypothesized that PCL/HA and PLGA/HA scaffolds will mimic the nano-features of the natural 

extracellular matrix (ECM) and are expected to be effective as a matrix for cellular growth, proliferation 

and new tissue formation. To test if these scaffolds mimic the properties of natural ECM, we used 

TRAMP C1 and TRAMP C2 cell lines derived from transgenic adenocarcinoma of mouse prostate 

(TRAMP) mice. The scaffolds were analyzed by MTT assay at different time points to verify cell 

toxicity/proliferation. Characterization for morphology of the electrospun fibers were observed using 

scanning electron Microscopy (SEM) and micrographs were analyzed using image analysis software. The 

fibers were characterized for thermal behavior using Differential Scanning Calorimetry (DSC), and for 

chemical structure using Fourier Transform Infrared Spectroscopy (FTIR). 

 

 Introduction 

With the continual aging of the population in the United States, bone fractures and diseases such as 

osteoporosis, osteomalacia and osteitis deformans (Paget's disease of bone) present a need for the 

development and perfection of bone regeneration methods [1].  While numerous bone fractures can be 

treated by bone grafting, success rates vary, and the treatment is limited in several ways.  Biodegradable 

bone tissue scaffolds may provide solutions that strike a balance between function and mechanical 

properties. Our interest in biodegradable polymers for bone tissue scaffolds includes controlling the 

polymer architecture through chemical modifications and preparing polymeric nanofiber scaffolds via 

electrospinning for tissue engineering.  

 

The underlying principle of tissue engineering involves regenerating living tissue using cell-scaffold-

based approaches [2 - 5]. Tissues can be potentially engineered by utilizing a combination of the 

patient’s own cells combined with polymer scaffolds. One of the challenges in tissue engineering is the 

design of an ideal scaffold that can mimic the structure and biological functions of the natural 

extracellular matrix (ECM). Cells can attach and organize well around fibers with diameters smaller than 

those of the cell. Nanoscale fiber scaffolds provide an optimal template for cells to seed, migrate and 

grow. Polymeric nanofiber matrix is the most promising scaffolding materials for native ECM analogs [6, 

7]. Electrospinning can produce polymeric fibers of nano-diameters to mimic the nanoscale features of 

native ECM. While a significant number of studies have investigated biodegradable polymers for bone 

tissue scaffolds, one problem which has not been solved is the mismatch between the mechanical 

properties of the bone and the scaffold materials.  Thus, our objective is to develop biodegradable tissue 

scaffolds for bone that mimics the size scale and chemistry of the ECM with nanometer dimensions, an 

interconnected pore structure, and enhanced mechanical properties. We will investigate interesting 

combinations of constituent materials and modifications of the electrospinning process to develop 



polymeric scaffolds with varying degrees of hierarchical complexity and functionality, and evaluate their 

propensity for cell growth.  

 

In this study, scaffolds using PLGA/HA and PCL/HA nanofibers with different wt % compositions were 

fabricated via electrostatic co-spinning technology and characterized for bone tissue engineering 

applications. The inherent nonwoven nature of the electrospun nanofibers result in interconnected 

pores sufficient for cell attachment [8, 9]. The process of electrospinning involves an applied electric 

field to form fibers from a polymer solution. The size, properties, and quality of the fibers will differ 

depending on the concentration of the solution and process parameters of electrospinning (applied 

voltage, needle size, volume feed rate, distance of the collector plate from the needle tip, as well as the 

solution characteristics i.e., viscosity, conductivity).  The formation of nanofibers by electrospinning is 

induced via the uniaxial stretching of a viscoelastic solution. 

 

Polycaprolactone (PCL), biodegradable polyester, has received US FDA approval for several clinical 

applications for humans and is also a commonly used scaffold for tissue engineering due to its high 

biocompatibility, mechanical properties and nontoxicity. However, the drawbacks of PCL, such as its 

strong hydrophobicity, slow degradation kinetics, and lack of bioactive functions, have greatly limited its 

application as scaffolds in tissue engineering. Therefore, blending the bioactive functions of 

hydroxyapatite with the good mechanical properties of PCL to generate a new biohybrid material should 

show an improvement in biological, mechanical, and degradation properties compared with the 

individual components. 

Hydroxyapatite (HA) is osteoconductive, nontoxic, noninflammatory, and promotes cell proliferation. In 

addition, it has been reported that hydroxyapatite can increase the compressive strength of PCL [10, 

11]. Furthermore, as one of the natural components in bone, hydroxyapatite imitates the natural bone 

extracellular matrix, increasing surface area, wettability, and roughness, to optimize bone cell-specific 

protein interaction with cells. 

 
Methods 

Materials: 

PLGA copolymer with lactide to glycolide ratio of 85/15 and inherent viscocity 0.63 dL/g was obtained 

from Lactel Absorbable Polymers (AL, USA). PCL polymer with an inherent viscosity 1.15 dL/g aws 

 Hydroxyapatite (HA) powder with an average obtained from Durect Corporation, (Cupertino, CA). 

diameter of 100 nm-150 nm particle size and 15 m2/g surface area were purchased from Nanocerox Inc. 

(Ann Arbor, MI). Methanol (CH3OH), Chloroform (CH3Cl), Dichloromethane (DCM) and 

Dimethylformamide (DMF) were obtained from Fisher Scientific (Fair Lawn, NJ). All solvents were used 

as received without further purification. 

 

Solution Preparation: 



Fig 1: Electrospinning Set-up for collecting randomly aligned Nanofibers 

Different compositions of PLGA/HA 1%, PLGA/HA 5% and neat PLGA were prepared in CH2Cl2. PCL/HA 

solutions were prepared where HA particles (1.0, 5.0 and 10.0 wt %) were mixed with PCL first under 

mechanical stirring in DMF to ensure a good dispersion of HA particles within the resulting. DCM was 

added and the mixture stirred and sonicated until the PCL powder dissolved completely to form a 

precursor dispersion for electrospinning nanofibers. 

The polymers were dissolved using a magnetic stirrer to achieve a ~15.0-wt% solution and electrospun 

at a high voltage (GAMMA High Voltage Research, Ormondo Beach, FL) of 15 kV to create nanofibers. A 

feeding rate of 1.5 mL/hr (0.025 mL/min) was set in an F100 Syringe Pump (Chemyx Inc, Houston TX) 

and a grounded aluminum collector plate was placed about 10 cm from the tip of the needle.  

Electrospinning Process: 

Electrospinning is a process that is used to produce nanofibers from solution. To generate fibers, a 

polymer solution is forced through a capillary, forming a drop of polymer solution at the tip. Charges 

(~17 kV) from a high voltage electrical field are induced on the liquid droplet held by its surface tension. 

This is done by connecting one electrode to a syringe containing the polymer solution and another to a 

collector plate. As the intensity of the electric field increases, surpassing a threshold value, the droplet 

elongates, the electrostatic force between the needle and the collector plate overcomes the surface 

tension, and a streaming jet of the solution is ejected from the tip of the needle. The solvent evaporates 

leaving behind a charged thin polymer fiber.  Fibers are deposited in a random orientation when the 

collector is a flat metal plate. Fibers can be deposited in a rotating target when the collector is modified 

to incorporate a rotating metal plate on which the polymer is wound. The resulting fibers can have 

diameters on the order of tens to hundreds of nanometers. In electrospinning, the key to optimal 

properties is significant elongation of the polymer.  As the electrospinning jet moves away from the 

nozzle, it is stretched by whipping and bending instabilities. This results in an extremely large draw ratio, 

which serves to elongate and align the polymer chains.  

 

 

 



Fig 2: FTIR-ATR spectra of Polymer Nanocomposites  

Results 

Characterization 

Fourier Transform-Infrared (FT-IR) spectra were recorded in attenuated total reflection (ATR) mode 

using a Thermo Nicolet iS50 FT-IR Spectrophotometer (DOD W911NF-14-1-0075). The spectra were 

obtained with 32 scans per sample ranging from 4000 to 400 cm-1. Spectra showed an ester carbonyl 

stretch from the PLGA and PCL (C=O) at 1747 cm-1 in all the scaffolds with no significant shift due to HA 

interaction. Other major peaks observed were the C-O-C ether group at 1083 cm-1, C-O stretch at 1128 

cm-1,O-H deformation at 1264 cm-1, methyl group C-H stretching at 1452 cm-1 and other methylene, 

methyl groups at 2800–3300 cm-1. For the nanocomposite scaffolds a PO4 3- stretch (1030 cm-1) and 

bending (570 cm-1), typical of HA were observed with intensities varying proportionally to the HA 

concentration. 

 

 

 

 



Fig 3: DSC Thermal Behavior Data for PLGA and PCL Scaffolds 

Thermal analyses of the scaffolds were evaluated using a TA Instrument DSC Q2000 differential scanning 

calorimetry (DOD W911NF-06-1-0497). DSC was used to study the thermal behavior of the nanofibers. 

5.0-10.0 mg cured samples were heated from room temperature to 250°C with a heating rate of 

10°C/min.  The sample chamber will be purged with nitrogen gas at a flow rate of 50mL/h.  

 

 

 

 

The morphology of the fibers is currently under evaluation using scanning electron microscopy (SEM). 

The fiber diameter distributions in the scaffolds will be obtained by analyzing the SEM micrographs using 

image-analysis software. It is expected that the diameter distributions of PLGA/HA nanofibers will be 

well within the range of the natural ECM (50–500 nm) [8, 12-15].  



Fig 4: Effect of different concentrations of Polymer Nanocomposite on cell viability 

Cytotoxic properties of nanofiber scaffolds evaluated in vitro cell culture system. TRAMP C1 cells were 

treated with different percent of PLGA/HA for 24 hours and cell toxicity was analyzed by MTT assay. 

TRAMP C2 cells were seeded on neat PCL and PCL with different percentage of HA for 24 hours at 37 0C 

with 5% CO2. Cell viability was measured using the methyl thiazoletetrazolium (MTT) assay. 

 

Fig 4: Effect of different concentrations of PLGA/HA and PCL/HA scaffolds on cell viability. 

 

Figure 4 demonstrates that the viability of TRAMP cells was not compromised even at higher percentage 

of PLGA/HA and PCL/HA. Thus, this data suggests that PLGA/HA and PCL/HA can be used a therapeutic 

carrier without compromising the viability of cells.  
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